在超越摩尔定律的技术路径上,系统级封装(SiP)是最有潜力的候选者之一。在低端到高端,终端应用中的各种 I/O 和封装尺寸中都可以找到SiP技术的身影。而且,芯片的高度集成化也推动SiP不断迭代升级,以满足高性能和低时间成本的异构集成需求。集微咨询(JW insights)认为,随着异构集成技术的不断发展和厂商接受程度的不断提高,SiP 将进入全面快速的发展周期。
SiP封装的起源
MCM(多芯片模块)是 SiP 技术的最初起源。它构建于已有的封装技术之上,比如倒装芯片、wire bonding(线键合)、fan-out 晶圆级封装。当单芯片集成(SoC)进展停滞的时候,能整合多个不同系统的 SiP 成为了突破方向之一。
根据标准定义,SiP 是将多个具有不同功能的有源电子元件与无源器件,以及诸如 MEMS 或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件,形成一个系统或者子系统。
2010 年,晶圆级工艺与传统的 FC 和 wire bond 工艺结合,带来了 SiP 封装的高速发展。将 wire bond、FC、wire bond+FC、WL Package、TSV、Trench、Embedded 和 Fanout 等多种工艺结合成为 SiP 发展的趋势。OSAT 厂,也就是传统意义的封装厂已经不仅仅做后道工艺,而像台积电这样的晶圆厂也不仅仅局限于前道工艺,两者都在逐步进入中道工艺的领域,这也促成了 SiP 的快速发展。
从第一代 Apple Watch 开始,苹果就在 S 芯片中使用了 SiP 封装,并沿用至今。以2019 年 9 月发布的第五代 Apple Watch S5 为例,其普通版通过 SiP 方案将应用处理器(AP)、电源管理单元(PMU)、音频芯片、调制解调器芯片以及充电芯片等芯片封装在约 700m㎡ 大小 PCB 上,并在 SiP 模块背面集合了惯性测量单元(IMU)和 GPS 前端模组;蜂窝板 S5 则在此基础上增加了额外的射频前端模组(RFFE) 和调制解调器芯片(Modem)。
SiP 技术发展很快,形成了多种不同的实现方式。如果按照模块排列方式进行区分,可大体分为平面式 2D 封装和 3D 封装的结构。相对于 2D 封装,采用堆叠的 3D 封装技术又可以增加使用晶圆或模块的数量,从而在垂直方向上增加了可放置晶圆的层数,进一步增强 SIP 技术的功能整合能力。而在 SiP 的内部,可以通过单纯的线键合(Wire Bonding),也可使用覆晶接合(Flip Chip),或二者混用。
很多半导体厂商都有自己的 SiP 技术,命名方式各有不同。比如,英特尔叫 EMIB、台积电叫 SoIC。这些都是 SiP 技术,差别就在于制程工艺。以台积电为例,其 SiP 技术的优势在于晶圆级封装,技术成熟、良率高,这也是普通封测厂商难以做到的。